Guided tour articles
Full Bridge
This is a simplified motor control circuit and shows the switching scheme used in our 4QD series full bridge [aka H bridge] motor controllers. The circuit shows a full bridge of four MOSFETs. In forward Read More
Battery current and motor current [tour 4]
The battery current and motor current in a PWM controller can be very different. Many people do not realise is that a PWM controller operates rather like a transformer (using the motor’s inductance) to deliver Read More
MOSFETs [tour 5]
MOSFET is an acronym – I’ll give you the whole phrase, so you know why they’re always called MOSFETs.. Metal Oxide Silicon Field Effect Transistor. MOSFETs are very near to perfect semiconductor switches, capable of Read More
Half bridge [tour 6]
Our controllers use either a full bridge or a half bridge PWM circuit to to control the speed of an electric motor. In the half bridge configuration two sets of MOSFETS are connected across the Read More
Switching frequency [tour 7]
All 4QDs controllers have a switching frequency of (around) 20 thousand times per second – 20kHz. This is high enough to give no whistle or whine from the motor but, more importantly, it means that Read More
Regenerative braking [tour 8]
Regenerative braking is a way of diverting the kinetic energy of a moving motor / vehicle back into the battery so that it re-charges the battery and provides a braking effect. Most of 4QDs controllers Read More
Current limit [tour 9]
Current limit – drive Protection is fitted to all controllers so that the initial starting surge (or the current that would flow if the armature were locked) cannot exceed that which the MOSFETs can handle. Read More
Thermal shutdown [tour 10]
Thermal shutdown and current trip On some controllers a thermal sensor is fitted (or can be fitted as an option) to detect the MOSFET temperature and reduce the available current if the heatsink overheats. At Read More
Heatsinks [tour 11]
All electrical items carrying current get hot. The amount of heat is actually proportional to the square of the current, so doubling the current causes four times the heat. A high current motor and controller Read More
Ignition [tour 12]
When the controller is not in use it needs to be deactivated. The ignition circuitry (fitted to all controllers) does this, so the controller draws no current and the throttle input will have no effect. Read More
Power down state [tour 13]
When the controller is powered down (ignition turned off) but with the battery still connected, different controllers behave in different ways. There are, essentially, 3 possibilities: Open circuit Short circuit Diode Open circuit All semiconductor Read More
Ramps [tour 14]
Acceleration Ramp Even if the throttle is applied sharply, the controller must accelerate the motor smoothly, without a jerk, so an ‘acceleration ramp’ is built into all controllers. This may be a an adjustable ramp Read More
Reversing [tour 15]
A permanent magnet motor is reversed simply by interchanging its two armature wires. This can of course be done with any controller by using a suitable, high current, double pole changeover switch. However reversing should Read More
Inhibit switch / footbrake – 4QD series only [tour 16]
If a vehicle is fitted with a hand or foot brake, it can be useful to disable the controller. This can be done with an interlock to ignition circuit on any controller. The problem Read More
Forward / off / reverse mode or push-button operation [tour 17]
Some controllers can be used with either a 3 position toggle or rocker to give forward/off/reverse or with two push buttons to give ‘go forward’ and ‘go reverse’ control. The DNO and Pro series need Read More
Overvoltage protection [tour 18]
If a controller includes regenerative braking, then there is a potential problem if a battery connection fails during braking. This can happen on a golf buggy if the batteries are not properly secured. If it Read More
Undervoltage cutback [tour 19]
Undervoltage cutback – or Battery Discharge Protection When a battery is discharged its voltage falls. It is a widely known fact that discharging a battery too far can damage it, especially if it is left Read More
Gain adjustment, pots, and inputs [tour 20]
All 4QD’s controllers work on an input voltage, which is usually derived from a potentiometer. Gain adjustment This enables the top speed to be reduced, e.g. in a child’s car where the child is too Read More
Joystick [aka wig-wag] [tour 21]
A joystick (know in USA as a Wig-Wag control) is a lever operated speed and direction control. Move the lever forward to go forward, and pull it back to go backwards. The speed is controlled Read More
Parking brake driver [tour 22]
Parking Brake Driver Regenerative braking relies on the voltage generated by the rotating armature to cause braking so it is speed dependent. If the speed is slow enough there is no effective braking, so the Read More
Brake light driver [tour 23]
On some controller we can fit, at the factory, a ‘braking’ light driver. This braking light option replaces the standard parking brake driver. On road vehicles a brake light may be required. If the vehicle Read More
Pot fault detection [tour 24]
If a wire to the pot breaks various things can happen. If the full speed wire breaks, then the pot cannot select full speed so this is generally safe. If the output (wiper|) from the Read More
High pot lockout HPLO [tour 25]
If the controller’s ignition is turned on while the throttle pot is not at zero the vehicle could accelerate to speed. High pot lockout [HPLO] prevents this by disabling the vehicle until the throttle returned Read More
Reverse polarity protection [tour 26]
If you inadvertently connect the battery up the wrong way round , then depending on which model you have, the controller may be destroyed in quite a spectacular manner! Only you can decide if this Read More
Main capacitor [tour 27]
If you have read the page entitled Half-Bridge you will remember that the battery current is being switched on and off 20,000 times per second. Now electricity in wires has the equivalent of ‘mass’ – Read More
Radio control interface [tour 28]
Most controllers are situated close to the user, e.g. in a ride-on golf buggy, so are controlled by a speed control pot wired directly to the controller. However some markets, such as Robots and some Read More
Tacho generator feedback [tour 29]
A tacho generator generates a feedback signal proportional to the speed of rotation, which can be used to provide closed loop control of a motors speed. Varying loads If such a ‘tacho’ is used and Read More
Voltage following [tour 30]
All controllers made by 4QD work with a voltage input, normally derived from a potentiometer. However it’s the voltage input that determines the speed. The controller cannot tell whether that voltage is coming from a Read More
Double heading [tour 31]
Double heading is a term used by loco builders, it is where you have an engine on each end of the locomotive, so each end is a ‘head’, hence double heading. For double heading, you Read More
Choosing a Controller [tour 1]
When choosing a controller, both it and the motor should be matched to the mechanical task that is to be done. So – you first of all need to understand the mechanics: What mass do Read More
What Does a Motor Speed Controller Do?
Fundamentally a motor speed controller just regulates the speed and direction of an electric motor by manipulating the voltage that is applied to it, but it actually has to do quite a lot more than Read More